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Abstract-The higher-order plate theory is adopted in the finite strip method to analyse orthotropic
laminated plates in this paper. Several examples with the existing elasticity solutions are illustrated
to validate the accuracy and efficiency of the present formulation. Although fewer degrees of
freedom are required, the present model yields the same or even better displacement and flexural
stress results than the higher-order plate element. The through-thickness distribution of transverse
shear stress is also properly predicted through the stress equilibrium equation.

INTRODUCTION

The classical plate theory, which ignores transverse shear effects, can provide reasonable
predictions only for relatively thin plates. To take account of the effects of transverse shear
deformation, a number of improved "thick" plate theories have been developed. One of
these is the Mindlin plate theory in which a straight line originally normal to the plate
median surface will be straight but not normal after deformation. Recently, several CO
higher-order plate theories have been developed by Lo et al. (1977), Levinson (1980) and
Kant and Pandya (1988) to consider transverse shear effects and the warping of the cross­
section. Therefore, the straight line becomes curved after deformation. The transverse
normal stress is further considered in the displacement model by Lo et al. Reddy (1984a)
proposed a refined C 1 higher-order plate theory satisfying the zero transverse shear stress
conditions on the plate top and bottom surfaces.

The finite strip method has been considered to be a more efficient computational tool
than the finite element method for the prismatic structure. However, the transverse shear
deformations are neglected in the classical plate theory used by Cheung and Cheung (1972).
As an attempt to include the transverse shear effects, Mawenya and Davies (1974) applied
the finite strip method to the Mindlin plate theory. Therefore, it is good for thin and
moderately thick plates. Later, the X-spline finite strip method proposed by Yang and
Chong (1984) was also explored to allow for the nonprismatic structures to be analysed. It
is surprising that the combination of higher-order plate theory with the finite strip method
was not found in the literature.

The present study serves as a preliminary study on the application of the higher-order
plate theory to the finite strip method in the analysis of laminated plates. The assumed
displacement model by Lo et al. is adopted, and the CO approach is attractive due to the
simplicity and implementation in programming. Through several comparative examples, it
has been revealed that the accuracy of the present model is comparable to the closed-form
and other finite element solutions. The through-thickness distribution of transverse shear
stresses was also evaluated through the stress equilibrium equation, and good agreement
with the elasticity solution was observed.

FINITE STRIP FORMULATION

The displacement field of higher-order plate theory assumed by Lo et al. (1977) is
adopted. Thus,

U(X,Y,z) = UO(X,Y) +zOy{x, y) +Z2U*(X, y) +z30j(x,y),

v(x,y, z) = vo(x, y) +zOx(x,Y) +Z2V*(X, y) + z 30:(x,y),

w(x,y,z) = wo(x,y)+zOz(X,y)+Z2W*(X,y).
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The above displacement assumption is written in matrix form as

{A} = [L] {d}, (2)

where z is the distance from the panel midplane, {A} = {u, v, w} is the 3-D displacement
field, and {d} = {uo, Vo, wo, Ox, 0y, 0" u*, v*, w*, O~, OJ} is the midplane displacement field
including II variables, as shown in Fig. 1.

Since the CO-continuous displacement model is adopted, the midplane displacement
{d} for a typical strip is interpolated by nodal displacements {q} as

nsf

{d} = [N]{q} = L [Ni]{q;},
;= 1

(3)

where nst is the nodal number per strip, [N]\[Ni] are the matrices of shape functions, and
{q;} = {uo;, VO;, wo;, Ox;, Oy;, 0zi, ut, vt, wt, O~;, O;!i} are nodal displacements.

In the semi-analytical finite strip method, the simple polynominals are used in the
transverse direction and the continuous eigenfunctions are in the longitudinal direction,
with the latter satisfying apriori the end boundary conditions of the strip. The eigenfunction
Ym(y) for various end conditions can be found in Cheung (1976). For a strip with both
y = 0 and y = b ends simply supported,

Ym(y) = sin (mn ylb), m = 1,2,3, ... (4)

As the 3-noded strip element is adopted, the shape functions Ni(~) the same as the
usual finite element method are

(5)

The interpolation of midplane displacements can be written explicitly as

nsf r

Uo = L L Ym(y)Ni(X)U~,
i= I m= I

nsf r

Wo = L L Ym(y)Ni(X)W~,
i= I m= I

nsf r

Oy = L L Ym(y)Ni(X)()~,
i= I m= I

nsl ,

u* = L L Ym(y)Ni(x)U*i,
i= I m~ I

nsf r

Vo = L L Y;"(y)N;(x)v~,
i= I m= I

nsf r

Ox = L L Y;"(y)N;(x)()~,
i~ I m~ I

nsl r

Oz = L L Ym (y)Ni (x)0; ,
i~ I m~1

nsf r

V* = L L Y;"(y)Ni(x)V*i,
i~ I m~ I

mt , ml r

W* = L L Ym(y)Ni(x)W*i, 0: = L L Y;"(y)Ni(xW:i,
i= I m= 1 i= I m= 1

nsf r

OJ = L L Ym(y)N;(X)():i,
i~ I m~ I

where r is the number of terms used in the series of eigenfunctions.
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Fig. I. Geometry of strips and laminated plates.
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The 3-D displacement {A} is also obtained by substituting (3) into (2) to obtain

nsf r

{A} = [N]{q} = L L [LHNi] Ym(y){qi} ,
i= 1 m= I

where [N] is the shape function matrix.
Based on the small deformation theory, the strains are constructed as

8x = u,x = uo,x+zOy,x+z2u~+Z30:'n

8y = V,y = VO,y+zOX,y+Z2vj+Z30:'y,

8z = W,z = Oz.z+2zw~,

yxy = U,y +v.x

= (UO,y +vo,x) +z(Oy,y +Ox.x) +Z2(uj +v~) +Z3(0:,x +O:'y) ,

Yxz = u,z +W.x = wo,x+zOz,x+z2w~+Oy+2zu*+3z20j,

Yyz = V,z +w.y = WO,y+zOz,x+z2w,~+Ox+2zv*+3z20:.

The generalized midplane strain is therefore defined as
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(7)

(8)

{e} = {{uo,x ; VO,y ; UO,y +vo,x ; Oz ;u~ ; v~ ;uj +v~}, {Ox,y ; Oy,x ;

Oy,y +Ox,x; 2w* ; O:,y; O:'x ; O:,x +O:'y}, {wo.x+Oy; wo.y+Ox ;

2u*+Oz,y ;2v*+Oz,x; wo,x+30j; wo,y+30:}}. (9)

With the above definitions, {e} is related to {d} by

{f} = [B]{d}, (10)

where [B] is the proper differential operating matrix.
Correspondingly, the midplane stress resultants are defined as

{O'} = {{NoN" Nty,N:· Nj,N:y,Nz}, {Mx,MyoMxy ,

M:, M~, M:y, MJ, {Qx, Qy, So Sy, Q:, Qj}}

(N
x Ny Nxy

N) n' fk+' f}
Mx My M xy

~ = L [cfx~~yCT~] dz,
z k= I hk z

(N:
N* N* ) n1 fk+! {Z2}y

M
X
: = L 3 [cfx ~ T~y] dz,M* M*x y xy k= 1 hk Z

(;, Qj "tT}Sy = L Z [T~z r~z] dz (11)
k~ 1 hk

Q: Q} Z2

(nl is the total number of layers and hi is the vectorial distance from the panel midplane).
The constitutive equation is then the relation

{a} = [D]{6'} = [D][B] {d}, (12)

where the material property matrix [D] is the same as that used in Lo et al. (1977).
The laminated plate is divided into n strips and each strip accumulates n/layers. The

total potential energy 7t of the strip element is therefore given by the following equation:

(13)

$AS 3O:3-J
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where {e} is the strain, {u} is the stress, V ni is the volume of the ith strip, {t} is the
transverse loading, and SUni is the area in the ith strip subjected to transverse loading.

Integrating 1t through the thickness, the stresses {u} become the midplane stress
resultants {O'}, and the strains {e} are then replaced with the midplane strains {e}. Thus,
the functional 1t becomes

(14)

where Rni is the midplane area of the ith strip.
By substituting (10) and (12) into the last equation, the total potential energy is

expressed as

(15)

In finite strip formulation, the midplane displacements {d} and the 3-D displacements
{A} are both interpolated by nodal displacement {q}. Substitution of (3) and (16) into (15)
yields

n 1 r n r
1t = i~l 2 {q}/ JRnl [BY[DJ[B] dA {q} - i~l Jsunl {q}TNY {t} dS,

where [B] is the strain-displacement matrix.
This leads to the stiffness matrix and loading vector,

[k] = L., [BY [D] [B]dA, {Q} = il1
nl

[NY {t} dS.

The equation for a plate strip element is derived as

[k] {q} = {Q}.

Assembling (18), the finite strip equation becomes

[K] {r} = {R},

(16)

(17)

(18)

(19)

where [K], {r}, {R} are global stiffness, displacement and loading, respectively.
Based on the attained values for {r} and height z, the displacement analysis of

any point is accomplished. Flexural stresses are computed from the constitutive relation.
However, the through-thickness distribution of transverse shear stresses is calculated from
flexural stresses through the stress equilibrium equation in this paper.

NUMERICAL EXAMPLES

The performance of the present refined finite strip method associated with the higher­
order plate theory is demonstrated through several benchmark problems. So that they can
be compared with the existing closed-form solutions, the edges of rectangular plates are
considered to be invariably simply supported and the transverse loading is assumed to be
sinusoidally or uniformly distributed. It is also assumed that the material and thickness for
all layers are the same. The orthotropic material properties on principle axes are

Ell = 25 x 1Q6 psi, En = E 33 = I x 106 psi, G12 = Gn = 0.5 x 1Q6 psi,

G23 = 0.2x 1Q6 psi, Vl2 = V23 = Vl3 = 0.25.
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S=4
s= 10
S=20
S= 50
S= 100

For the purpose of comparison, the following normalized quantities are employed:

_ 100E22w
W = qo/tS4 ,

1
(fxl' fyl' t7z ) = -S ('Xlo 'ylo O"z),

qo

o _ w(FEM) - w(Elasticity Solution) 01

Error Yo - (El" S I .) /0,w astlclty 0 utlOn

where S = a/h is the span-to-thickness ratio.
The numerical results obtained by the present finite strip method are represented by

FSM, and the results of the higher order plate element by Kant and Pandya (1988) are
indicated as HOPE. Since fast convergence is shown below, a full plate of 10 strips is
modelled, unless stated otherwise. The transverse deflection W, flexural stresses o"x, O"y, 'xy

at the centre of the plate, and transverse shear stresses 'xz at (0, b/2), and 'yz at (a/2, 0) are
particularly interested since they are of the maximum values.

Single-layer plate
A simply-supported square plate is subjected to a sinusoidal transverse loading qo sin

(nx/a) sin (ny/b). The value of qo is arbitrary since dimensionless quantities are used. One
term of the eigenfunction series is used since there is only one term in this loading. The
normalized centre deflections for plates of span-to-thickness ratios 4-100 are tabulated in
Table I. The elasticity solution by Pagano (1969) and the Navier's solution in Reddy's
book (1984b) are also appended for comparison. Excellent accuracy is observed. The error
for the S = 4 plate is restricted to only 0.06%.

Two-layer composite laminate
This example is to illustrate the effect of mesh refinement on the deflection and stress

predictions in the present development. Two-layer cross-ply (0°/90°) square laminated
plates are simply-supported along the edges and are subjected to sinusoidal loading.

The convergence studies ofnormalized centre transverse deflection and flexural stresses
for thick (S = 4), moderately thick (S = 10), and thin (S = 50) laminates are tabulated in
Tables 2-4, respectively. The plate is divided into 2, 4, 6 and 10 strips. Compared to
Pagano's elasticity solution, the present FSM results are all better than those of HOPE.
This improvement is more evident in thick plates. In the analysis of the S = 10 moderately
thick plate, the error of 1.56% by HOPE is reduced to 1.18% for FSM. For the S = 4
plate, the error of 5.7% is reduced to 2.40%. The flexural stresses are secondary variables
and then there exist slightly larger deviations. However, the present results are better than

Table I. Normalized transverse maximum
deflection of single square plate

Deflection IV = IOOE22w(a/2, b/2, 0)/qohS4

Present Navier Pagano
1.60729 0.42612 1.60827
0.63693 0.42612 0.63913
0.48357 0.42612 0.48647
0.43966 0.42612 0.44275
0.43335 0.42612 0.43647

Navier (I984b): closed-form solution of the
classical plate theory.

Pagano (1969) : elasticity solution.



446 Table 2. Normalized stresses and deflection of two-layer. (0°/90°) square plate. S = 4

Source
(mesh) G.\" T.\:y i.~: IV

Present 0.7492 -0.05882 0.1029 2.0303
2 -0.1126 0.05693

Present 0.7817 -0.05857 0.1241 2.0253
4 -0.1119 0.05764

Present 0.7763 -0.05832 0.1283 2.0250
6 -0.1113 0.05784

Present 0.7730 -0.05816 0.1304 2.0249
10 -0.1110 0.05790

Pagano 0.7807 -0.05910 0.1353 2.0741
-0.1098 0.05880

Kant et 01. 1.0181 -0.06000 0.0954 1.9563
2x2 -0.0926 0.06000

Kant et 01. (1988): higher-order plate element
locations: a, at (0/2. 0/2, fO.5). f,yat (0. O. fO.5). f" at (0. 0/2, 0). IV at (012.

012, 0).

Table 3. Normalized stresses and deflection of two-layer. (0°/90°) square plate. S = 10

Source
(mesh) ax f.yy f..c IV

Present 0.7518 -0.05413 0.1018 1.2233
2 -0.9109 0.05693

Present 0.7383 -0.05399 0.1179 1.2205
4 -0.8993 0.05320

Present 0.7331 -0.05376 0.1212 1.2202
6 -0.8938 0.05330

Present 0.7300 -0.05361 0.1228 1.2202
10 -0.8905 0.05334

Pagano 0.7300 -0.05380 0.1250 1.2320
-0.0890 0.05360

Kant et 01. 0.7593 -0.05370 0.1086 1.2128
2x2 -0.0855 0.05370

Table 4. Normalized stresses and deflection of two-layer. (0°/90°) square plate. S = 50

Source
(mesh) G.... t.l:F f x: \i:'

Present 0.7403 -0.0534 0.1023 1.0722
2 -0.0872 0.0521

Present 0.7266 -0.0530 0.1167 1.0701
4 -0.0858 0.0525

Present 0.7213 -0.0528 0.1196 1.0699
6 -0.0852 0.0525

Present 0.7300 -0.0536 0.1211 1.0698
10 -0.8905 0.0533

Pagano 0.7235 -0.0528 0.1216 1.0744
-0.0846 0.0526

Kant et 01. 0.7244 -0.0537 0.1086 1.2128
2x2 -0.0852 0.0530
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Fig. 2. Number of strips for convergence of centre deflection.

the results of HOPE. Note that the convergence is quite rapid. Further illustrations for the
convergence of centre deflection are shown in Fig. 2. The effects of the span~to-thickness

ratio on the accuracy of maximum deflections is also exhibited in Fig. 3.
Figure 4 shows the variation of in-plane deformation u through the thickness of the

laminate for the S = 4 thick plate. Both FSM and HOPE are close to the elasticity solution.
The unusual distortion of the cross-section is also closely predicted herein.

6
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o 20 40 60 80 100 120
S

Fig. 3. Effect of span-to-thickness ratio on the accuracy of maximum central displacement.
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Fig. 4. Through-thickness distribution of in-plane deformation u(a/2, a/2, z/h) for a/h = 4 two­
layered plate.
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Fig. 5. Through-thickness distribution of in-plane stress u.la/2, a/2, z/h) for a/h = 4 two-layered
plate.
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plate.
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Fig. 7. Through-thickness distribution of in-plane stress fxy(O, 0, z/h)for a/h = 4 two-layered plate.

·····1'511
-- PfI/la.no
00000 HOPE

-0.8

-0.4

-o.a

0.6 J-=:::=::;::::::=~OO:-:o:-----------I

0.1

~
~ 0.0

-0.1

o.a

0.8

0.4

~ T~
0.00 0.06 0.10 0.16 o.ao 0.a6 0.80 0.86

Fig. 8. Through-thickness distribution of transverse shear stress f yzCa/2, 0, z/h) for a/h = 4 two­
layered plate.
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Fig. 10. Through-thickness distribution of transverse shear stress i yzCa/2, 0, z/h) for a/h = 4 three-
layered plate. .
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S=4
S= 10
S= 20
S= 50
S = 100

S=4
S = 10
S= 20
S= 50
S= 100

Table 5. Normalized transverse maximum deflection
of three-layer, (0°/90%°) square plate under sinus­

oidal loading

Deflection IV = 100E22w(a/2, a/2, O)/qohS'
Present Reddy Pagano
1.89855 1.9218 2.01420
0.71511 0.7125 0.75300
0.50557 0.4342 0.51978
0.44329 0.44820
0.43426 0.43777

Reddy (I 984a) : refined C' higher-order plate
theory.

Table 6. Normalized transverse maximum deflection
of three-layer, (0°/90%°) square plate under uniform

loading

Deflection IV = 100E22 w(a/2, a/2, O)/qohS'
Present Reddy
2.8760 2.9103
1.0963 1.0903
0.7790 0.7761
0.6847 0.6839
0.6700 0.6705

Reddy (1984b): refined C' higher-order plate
theory.

The through-thickness distribution of (ax, a y , Txy , Tyz) for the S = 4 laminate is depicted
in Figs 5-8. FSM and HOPE both yield accurate flexural stresses. While the transverse
shear stresses are calculated through the stress equilibrium equation, the predicted Ty= is in
good agreement with the exact solution.

Three-layer composite laminate
Three-layer (0°/90°/0°) cross-ply simply-supported laminated square plates are studied.

Sinusoidal loading and uniform loading are both investigated.
Table 5 tabulates the normalized centre deflection wfor sinusoidally loaded laminates,

and Table 6 is for uniformly loaded laminates. For the case of a sinusoidal loading, a three­
dimensional elasticity solution is available. It is clear that the present results are better than
the refined C I higher-order plate theory by Reddy (1984a) for S = 4 and 10 plates. Although
there exists a strangely large error for the S = 20 plate in Reddy's solution, the error of the
present model is only 2.73%. On the other hand, no elasticity solution is available for the
case of uniform loading. The numerical results using three terms are close to the series
solution by Reddy (1984b).

The through-thickness stress distribution is also exhibited for the case of a sinusoidal
loading. Similarly, accurate flexural stresses are obtained in both FSM and HOPE. While
the stress equilibrium equation is adopted, the distribution of (rw Tyz) resembles the
elasticity solution. They are plotted in Figs 9, to for the S = 4 plate, and in Figs 11, 12 for
the S = to plate.

CONCLUSIONS

A refined finite strip method using the higher-order plate theory has been proposed in
this paper. The comparative benchmark problems are given to demonstrate the adequacy
and accuracy of the present study. The transverse shear deformation can be effectively
evaluated, wherein the shear coefficient is not required. Meanwhile, the severe warping of
the cross-section is also closely predicted. With far fewer degrees of freedom, the present
model yields similar or even better results than the closed-form or finite element solutions.
It is thought to be attributed to the fact that the eigenfunctions Ym(y) exactly satisfy the
simply-supported boundary conditions. Owing to the accuracy shown in this study, the
application of higher-order plate theory to the finite strip method for laminated plates with
different support conditions or to the spline finite strip method can be executed with
confidence.
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